
Uma equipe internacional pesquisadores simulou, pela primeira vez, a formação e a evolução de uma estrela magnetar – classe com os campos magnéticos mais fortes do Universo. O artigo sobre a pesquisa foi publicado na revista Nature Astronomy nesta terça-feira (04).
Este tipo de estrela de nêutrons – incrivelmente densa, diga-se – é central no panorama de fenômenos cósmicos extremos, como hipernovas e explosões de raios gama. No entanto, sua origem é um mistério. Mas a pesquisa ajuda (e muito) na compreensão sobre elas.
Como pesquisadores simularam origem e evolução do tipo de estrela mais denso do Universo
Os núcleos de estrelas com massa oito vezes maior que a do Sol colapsam por conta da gravidade ao final da vida delas. Isso marca o início da explosão da estrela numa supernova. As camadas externas são ejetadas, enquanto o núcleo se contrai violentamente. É assim que estrelas de nêutrons – o objeto conhecido mais denso do Universo – se formam.
- Para você ter ideia: uma colher de chá da matéria de uma estrela de nêutrons pesa um bilhão de toneladas – equivalente a 100 mil Torres Eiffel.
Geralmente, dá para observar estrelas de nêutrons por meio de ondas de rádio. Mas algumas emitem poderosas explosões de raios-X e raios gama. Essas são comumente chamadas de “magnetares” – porque suas emissões são causadas pela dissipação de campos magnéticos extremos (um milhão de bilhões de vezes mais intensos que os da Terra).
Origem das estrelas magnetares
Como os campos magnéticos dos magnetares desempenham um papel crucial nos fenômenos luminosos com os quais estão associados, cientistas trabalham para entender sua origem. Várias teorias foram propostas. A mais promissora sugere a geração do campo magnético por meio da ação de um dínamo na proto-estrela de nêutrons, logo após a explosão começar.
“A ação do dínamo permite que um fluido condutor, como plasma, com movimentos suficientemente complexos, amplifique e mantenha seus próprios campos magnéticos contra os efeitos difusivos, que os enfraquecem”, explica Paul Barrère, pesquisador de pós-doutorado no Departamento de Astronomia da Faculdade de Ciências da Universidade de Genebra e segundo autor do estudo em questão, em comunicado publicado no site da universidade.

Muitos desses dínamos exigem uma rotação rápida do núcleo da estrela progenitora para serem eficazes. No entanto, essas velocidades de rotação são pouco compreendidas devido à falta de observações. Paul Barrère e os pesquisadores Jérôme Guilet e Raphaël Raynaud, do Departamento de Astrofísica do CEA Saclay, estudaram, portanto, um cenário alternativo.
Eles sugerem que a proto-estrela de nêutrons seja acelerada por parte da matéria ejetada inicialmente durante a supernova, que depois cai de volta sobre a superfície da estrela. “Isso torna o nosso novo cenário de formação independente da rotação da estrela progenitora”, diz Barrère.
O mecanismo favorecido para amplificar o campo magnético nesta proto-estrela de nêutrons é um tipo específico de dínamo, conhecido como dínamo Tayler-Spruit. “Esse mecanismo se alimenta da diferença de rotação dentro da estrela e de uma instabilidade do campo magnético”, explica o pesquisador.
Leia mais:
- Árvore milenar revela o que a última inversão do campo magnético causou na Terra
- O que é uma estrela de nêutrons?
- Quais os tipos de estrelas que existem?
Evolução das estrelas magnetares
O cenário proposto por Barrère, Guilet e Raynaud se concentra apenas nos primeiros segundos após a supernova, o que é muito breve em comparação à idade dos magnetares observados. É aí que entra a colaboração com cientistas das universidades de Newcastle e Leeds, especializados na evolução das estrelas de nêutrons.

Assim, a equipe simulou, pela primeira vez, a evolução de uma estrela de nêutrons com campo magnético produzido pelo dínamo Tayler-Spruit. A simulação foi numa escala de tempo de um milhão de anos.
A estrela de nêutrons simulada neste estudo reproduz as características observacionais dos chamados magnetares de campo fraco, descobertos em 2010. Esses magnetares têm dipolos magnéticos que são de dez a cem vezes mais fracos do que os dos magnetares clássicos.
Este estudo, portanto, demonstra que esses magnetares provavelmente se formam em proto-estrelas de nêutrons aceleradas pela acreção de matéria da supernova. E nas quais o dínamo Tayler-Spruit opera.
“Nosso trabalho representa um grande avanço em nossa compreensão dos magnetares e abre perspectivas muito interessantes no estudo de outros efeitos de dínamo”, diz Barrère. “Nossos resultados sugerem que cada dínamo deixa sua marca na configuração complexa do campo magnético e, portanto, na emissão observada dos magnetares.”
O post Pesquisa revela origem de estrelas com campos magnéticos mais fortes do Universo apareceu primeiro em Olhar Digital.
Fonte: https://olhardigital.com.br/2025/03/04/ciencia-e-espaco/pesquisa-revela-origem-de-estrelas-com-campos-magneticos-mais-fortes-do-universo/